Sleep deprivation (睡眠剝奪) is the condition of not having enough sleep. It can be either chronic or acute. The levels of sleep deprivation can vary widely.
A chronic sleep-restricted state can cause fatigue, daytime sleepiness, clumsiness and weight loss or weight gain. It adversely affects the brain and cognitive function. However, in a subset of cases sleep deprivation can, paradoxically, lead to increased energy and alertness and enhanced mood; although its long-term consequences have never been evaluated, it has even been used as a treatment for depression.
Few studies have compared the effects of acute total sleep deprivation and chronic partial sleep restriction. Complete absence of sleep over long periods is not frequent in humans (unless they suffer from fatal familial insomnia or specific issues caused by surgery); it appears that brief microsleeps cannot be avoided. Long-term total sleep deprivation has caused death in lab animals.

Diabetes
It has been suggested that people experiencing short-term sleep restrictions process glucose more slowly than individuals receiving a full 8 hours of sleep, increasing the likelihood of developing type 2 diabetes. In 2005, a study of over 1400 participants showed that participants who habitually slept few hours were more likely to have associations with type 2 diabetes. However, because this study was merely correlational, the direction of cause and effect between little sleep and diabetes is uncertain. The authors point to an earlier study which showed that experimental rather than habitual restriction of sleep resulted in impaired glucose tolerance (IGT). Sleep deprivation can cause insulin resistance in the body, triggering the onset of early diabetes.

On the brain
Sleep deprivation can adversely affect the brain and cognitive function. A 2000 study, by the University of California, San Diego School of Medicine and the Veterans Affairs Healthcare System in San Diego, used functional magnetic resonance imaging (fMRI) technology to monitor activity in the brains of sleep-deprived subjects performing simple verbal learning tasks. The study showed that regions of the brain's prefrontal cortex, an area that supports mental faculties such as working memory and logical and practical ("means-ends") reasoning, displayed more activity in sleepier subjects. Researchers interpreted this result as indicating that the brain of the average sleep-deprived subject had to work harder than that of the average non-sleep-deprived subject to accomplish a given task. They therefore concluded that the brains of sleep-deprived subjects were attempting to compensate for adverse effects caused by sleep deprivation.

The temporal lobe, a brain region involved in language processing, was activated during verbal learning in rested subjects but not in sleep-deprived subjects. The parietal lobe, not activated in rested subjects during the verbal exercise, was more active when the subjects were deprived of sleep. Getting less than the required number of hours needed to function leads to a decline in memory and judgement, this change in brain chemicals often leads to depression. Although memory performance was less efficient with sleep deprivation, greater activity in the parietal region was associated with better short term memory.

A 2001 study at the Chicago Medical Institute suggested that sleep deprivation may be linked to serious diseases, such as heart disease and mental illness including psychosis and bipolar disorder. The link between sleep deprivation and psychosis was further documented in 2007 through a study at Harvard Medical School and the University of California at Berkeley. The study revealed, using MRI scans, that sleep deprivation causes the brain to become incapable of putting an emotional event into the proper perspective and incapable of making a controlled, suitable response to the event.

The negative effects of sleep deprivation on alertness and cognitive performance suggest decreases in brain activity and function. These changes primarily occur in two regions: the thalamus, a structure involved in alertness and attention; and the prefrontal cortex, a region sub-serving alertness, attention, and higher-order cognitive processes. This was the finding of an American study in 2000. Seventeen men in their 20s were tested. Sleep deprivation was progressive with measurements of glucose (absolute regional CMRglu), cognitive performance, alertness, mood, and subjective experiences collected after 0, 24, 48, and 72 h of sleep deprivation. Additional measures of alertness, cognitive performance, and mood were collected at fixed intervals. PET scans were used and attention was paid to the circadian rhythm of cognitive performance.

A noted 2002 University of California animal study indicated that non-rapid eye movement sleep (NREM) is necessary for turning off neurotransmitters and allowing their receptors to "rest" and regain sensitivity which allows monoamines (norepinephrine, serotonin and histamine) to be effective at naturally produced levels. This leads to improved regulation of mood and increased learning ability. The study also found that rapid eye movement sleep (REM) deprivation may alleviate clinical depression because it mimics selective serotonin reuptake inhibitors (SSRIs). This is because the natural decrease in monoamines during REM is not allowed to occur, which causes the concentration of neurotransmitters in the brain, that are depleted in clinically depressed persons, to increase. Sleep outside of the REM phase may allow enzymes to repair brain cell damage caused by free radicals. High metabolic activity while awake damages the enzymes themselves preventing efficient repair. This study observed the first evidence of brain damage in rats as a direct result of sleep deprivation.

Animal studies suggest that sleep deprivation increases levels of stress hormones, which may reduce new cell production in adult brains.

On growth
A 1999 study found that sleep deprivation resulted in reduced cortisol secretion the next day, driven by increased subsequent slow-wave sleep. Sleep deprivation was found to enhance activity on the hypothalamic-pituitary-adrenal axis (which controls reactions to stress and regulates body functions such as digestion, the immune system, mood, sex, or energy usage) while suppressing growth hormones. The results supported previous studies, which observed adrenal insufficiency in idiopathic hypersomnia.

On the healing process
A study conducted in 2005 showed that a group of rats, which were deprived of REM sleep for five days, experienced no significant changes in their ability to heal wounds, compared to a group of rats not deprived of "dream" sleep. The rats were allowed deep (NREM) sleep. However, another study conducted by Gumustekin et al., in 2004 showed sleep deprivation hindering the healing of burns on rats.

On attention and working memory
Among the possible physical consequences of sleep deprivation, deficits in attention and working memory are perhaps the most important; such lapses in mundane routines can lead to unfortunate results, from forgetting ingredients while cooking to missing a sentence while taking notes. Performing tasks that require attention appears to be correlated with number of hours of sleep received each night, declining as function of hours of sleep deprivation. Working memory is tested by such methods as choice-reaction time tasks.

The attentional lapses also extend into more critical domains in which the consequences can be life-or-death; car crashes and industrial disasters can result from inattentiveness attributable to sleep deprivation. To empirically measure the magnitude of attention deficits, researchers typically employ the psychomotor vigilance task (PVT) which requires the subject to press a button in response to a light at random intervals. Failure to press the button in response to the stimulus (light) is recorded as an error, attributable to the microsleeps that occur as a product of sleep deprivation.

Crucially, individuals' subjective evaluations of their fatigue often do not predict actual performance on the PVT. While totally sleep-deprived individuals are usually aware of the degree of their impairment, lapses from chronic (lesser) sleep deprivation can build up over time so that they are equal in number and severity to the lapses occurring from total (acute) sleep deprivation. Chronically sleep-deprived people, however, continue to rate themselves considerably less impaired than totally sleep-deprived participants. Since people usually evaluate their capability on tasks like driving subjectively, their evaluations may lead them to the false conclusion that they can perform tasks that require constant attention when their abilities are in fact impaired.

On driving ability
Main article: Sleep-deprived driving
The dangers of sleep deprivation are apparent on the road; the American Academy of Sleep Medicine (AASM) reports that one in every five serious motor vehicle injuries is related to driver fatigue, with 80,000 drivers falling asleep behind the wheel every day and 250,000 accidents every year related to sleep, though the National Highway Traffic Safety Administration suggests the figure for traffic accidents may be closer to 100,000. The AASM recommends pulling off the road and taking a 15- or 20-minute nap to alleviate drowsiness.

According to a 2000 study published in the British Medical Journal, researchers in Australia and New Zealand reported that sleep deprivation can have some of the same hazardous effects as being drunk. People who drove after being awake for 17–19 hours performed worse than those with a blood alcohol level of 0.05 percent, which is the legal limit for drunk driving in most western European countries and Australia. Another study suggested that performance begins to degrade after 16 hours awake, and 21 hours awake was equivalent to a blood alcohol content of 0.08 percent, which is the blood alcohol limit for drunk driving in Canada, the U.S., and the U.K.

Fatigue of drivers of goods trucks and passenger vehicles have come to the attention of authorities in many countries, where specific laws have been introduced with the aim of reducing the risk of traffic accidents due to driver fatigue. Rules concerning minimum break lengths, maximum shift lengths and minimum time between shifts are common in the driving regulations used in different countries and regions, such as the drivers' working hours regulations in the European Union and hours of service regulations in the United States.

Other effects
In addition, as a result of continuous muscular activity without proper rest time, effects such as cramping are much more frequent in sleep-deprived individuals. Extreme cases of sleep deprivation have been reported to be associated with hernias, muscle fascia tears, and other such problems commonly associated with physical overexertion.

A 2006 study has shown that while total sleep deprivation for one night caused many errors, the errors were not significant until after the second night of total sleep deprivation. However, combining alcohol with acute sleep deprivation results in a trebled rate of driving off the road when using a simulator.

The National Sleep Foundation identifies several warning signs that a driver is dangerously fatigued. These include rolling down the window, turning up the radio, trouble keeping eyes open, head-nodding, drifting out of their lane, and daydreaming. At particular risk are lone drivers between midnight and 6:00am.

Sleep deprivation can negatively impact overall performance, and has led to major fatal accidents. Due largely to the February 2009 crash of Colgan Air Flight 3407, which killed 50 people and was partially attributed to pilot fatigue, the FAA reviewed its procedures to ensure that pilots are sufficiently rested. Air traffic controllers were under scrutiny when in 2010 there were 10 incidents of controllers falling asleep while on shift. The common practice of turn-around shifts caused sleep deprivation and was a contributing factor to all air traffic control incidents. The FAA reviewed its practices of shift changes and the findings saw that controllers were not well rested. A 2004 study also found medical residents with less than four hours of sleep a night made more than twice as many errors as the 11% of surveyed residents who slept for more than seven hours a night.

Twenty-four hours of continuous sleep deprivation results in the choice of less difficult math tasks without decreases in subjective reports of effort applied to the task. Naturally caused sleep loss affects the choice of everyday tasks such that low effort tasks are mostly commonly selected. Adolescents who experience less sleep show a decreased willingness to engage in sports activities that require effort through fine motor coordination and attention to detail.

Great sleep deprivation mimics psychosis: distorted perceptions can lead to inappropriate emotional and behavioral responses.

Astronauts have reported performance errors and decreased cognitive ability during periods of extended working hours and wakefulness as well as due to sleep loss caused by circadian rhythm disruption and environmental factors.

Microsleeps
Microsleeps occur when a person has a significant sleep deprivation. Microsleeps usually last for a few seconds and happen most frequently when a person is trying to stay awake when they are feeling sleepy. The person usually falls into microsleep while doing a monotonous task like driving, reading a book, or staring at a computer. Microsleeps are similar to blackouts and a person experiencing them is not consciously aware that they are occurring.

An even lighter type of sleep has been seen in rats that have been kept awake for long periods of time. In a process known as local sleep, specific localized brain regions went into periods of short (~80 ms) but frequent (~40/min) NREM-like states. Despite the on and off periods where neurons shut off, the rats appeared to be awake, although they performed poorly at tests.

Weight gain and loss
In rats, prolonged, complete sleep deprivation increased both food intake and energy expenditure with a net effect of weight loss and ultimately death. This study hypothesizes that the moderate chronic sleep debt associated with habitual short sleep is associated with increased appetite and energy expenditure with the equation tipped towards food intake rather than expenditure in societies where high-calorie food is freely available.

Several large studies using nationally representative samples suggest that one of the causes of high obesity rates in the United States might be a corresponding decrease in the average number of hours that people are sleeping. The findings suggest that this might be happening because sleep deprivation could be disrupting hormones that regulate glucose metabolism and appetite.

The association between sleep deprivation and obesity appears to be strongest in young and middle-age adults. Other scientists hold that the physical discomfort of obesity and related problems, such as sleep apnea, reduce an individual's chances of getting a good night's sleep.

Sleep loss is currently proposed to disturb endocrine regulation of energy homeostasis leading to weight gain and obesity. For instance, laboratory sleep deprivation studies in young men have demonstrated that one night of wakefulness (typically found in shift workers) exerts significant effects on the energy balance the next morning, including reduced energy expenditure, enhanced hedonic stimulus processing in the brain underlying the drive to consume food, and overeating that goes beyond satiety. Further recent studies have shown that a reduction of sleep duration to four hours for two consecutive nights has been shown to decrease circulating leptin levels and to increase ghrelin levels, as well as self-reported hunger. Similar endocrine alterations have been shown to occur even after a single night of sleep restriction.

In a balanced order, nine healthy normal-weight men spent three nights in a sleep laboratory separated by at least two weeks: one night with a total sleep time of seven hours, one night with a total sleep time of 4.5 hours, and one night with total sleep deprivation (SD). On a standard symptom-rating scale, subjects rated markedly stronger feelings of hunger after total SD than after seven hours of sleep (3.9 ± 0.7 versus 1.7 ± 0.3; P = 0.020) or 4.5 hours sleep (2.2 ± 0.5; P = 0.041). Plasma ghrelin levels were 22 ± 10% higher after total SD than after seven hours of sleep (0.85 ± 0.06 versus 0.72 ± 0.04 ng mL(−1); P = 0.048) with intermediate levels of the hormone after 4.5 hours sleep (0.77 ± 0.04 ng mL(−1)). Feelings of hunger as well as plasma ghrelin levels are already elevated after one night of SD, whereas morning serum leptin concentrations remain unaffected. Thus, the results provide further evidence for a disturbing influence of sleep loss on endocrine regulation of energy homeostasis, which in the long run may result in weight gain and obesity.

arrow
arrow
    全站熱搜
    創作者介紹
    創作者 repentor 的頭像
    repentor

    關於愛,我是個小學生。

    repentor 發表在 痞客邦 留言(0) 人氣()